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Problems describing gas motion with energy liberation near the boundary of two media 
of inhomogeneous densities are examined in a number of papers (see, e.g., [1-5]). The in- 
fluence of thermal radiation of the medium on the regularities of its motion becomes sub- 
stantial for a high density of the energy being liberated [5, 6]. 

Within the framework of a homothermal model, the regularities of gas motion in an at- 
mosphere are studied with evaporation of the condensed phase taken into account. 

In a condensed medium such as water, let the radiant energy E 0 be liberated instantan- 
eously near its surface in an infinitesimal volume. For a high radiation energy density, the 
temperature in the whole perturbation domain is equalized instantaneously because of inten- 
sive heat transfer, and a homothermal approximation can be utilized to estimate the charac- 
teristics of the occurring gas motion. We assume that the temperature depends only on the 
time T(r, t) ~ T(t). 

A thin surface layer of the compact substance is heated and evaporated owing to absorp- 
tion of the thermal radiation. The pressure gradient originating on the vapor-air interface 
results in motion of the substance being evaported in the air medium. A shockwave is propa- 
gated from the energy liberation site into the air. The density diminution due to the vapor 
motion contributes to radiation heating of the subsequent condensed medium layers and dis- 
placement of the vapor-compact medium interface. 

In this case, the fraction of the mechanical energy transmitted to the compact medium 
is negligible. According to [2], 2% of the energy being liberated during an explosion on 
a soil surface is transmitted to the soil in the form of mechanical energy due to diffusion 
of the radiation. Therefore, the shock being propagated in the compact medium can be neglec- 
ted, and the compact medium can be considered nondeformable. 

Therefore, a rarefaction wave whose leading front is the vapor-compact medium interface 
is propagated in a condensed medium at the isothermal speed of sound from the site of an ex- 
plosion. We call such a rarefaction wave radiational. 

We simulate the air and vapor by an ideal gas with the effective parameters Yi, Di (i = 
1 for air and i = 2 for the vapor). We neglect losses in the energy E 0 being liberated due 
to evaporation, dissociation, and ionization of the medium. 

The equations describing the homothermal gas motion (vapor and air) in the perturbation 
domain have the form 

ap au 
a-F + V(pu) = O, ~ + (uv)  u + a~ (ln p) = O, ( l )  

where  a = ~ i s  t h e  i s o t h e r m a l  speed  o f  sound ,  and A i s  t h e  gas  c o n s t a n t .  The gas  f low i s  
a x i s y m m e t r i c .  Two v e l o c i t y  and gas  d e n s i t y  components  must  be d e t e r m i n e d  as  f u n c t i o n s  o f  
two s p a c e  c o o r d i n a t e s  and t h e  t i m e .  

The p rob lem can be c o n s i d e r e d  in  a s e l f - s i m i l a r  f o r m u l a t i o n .  The s y s t e m  o f  d e f i n i n g  
parameters in this problem is as follows: r, z (if a cylindrical coordinate system is util- 
ized), E0, Pl, P2, YI, Y2, ~l, ~2, (Pl, P2 are the densities of the unperturbed air and vapor). 
All the dimensionless gas flow characteristics can be considered as functions of the dimen- 
sionless coordinates r(pl/E0)I/st-2/S, z(pl/E0)i/st-2/S and the constants P2/Pl, Yl, Y2, ~i, 
~2- However, even the self-similar problem turns out to be complex since it is two-dimen- 
sional. Equations (i) do not reduce to a system of ordinary differential equations. 

The situation is made even more complicated by the fact that the shock front and rare- 
faction wave surfaces on which the boundary conditions are given in addition to the system 
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TABLE i 

Crater shape fi 

Cone 

SeF~ment 

Hemispheroid 

t .  

t , t8 4'59" 10-6 I 
1,175 3,68.10 -~ 
t,i67 2,97.10 -6 

9,68 
t0,93 
t!,9 

(i) are not defined; they should be found during the solution. For this reason, even numeri- 
cal integration of (i) in the case of self-similar motion is fraught with significant diffi- 
culties. 

Let us consider the approximate solution of the problem formulated on the basis of using 
the integral mass, momentum, and energy conservation laws [7, 8]. It is shown in [8] that 
this method assures acceptable accuracy in many cases. 

We assume that the shock front velocity D is much greater than the speed of sound in 
the heated gas a (~ = D/a>>1). The air shock collects the air mass it perturbed in a thin 
layer 6 near the front. We assume the thickness of the layer 6 infinitely small, while we 
take the density in the layer almost infinite. 

In this case the integral gas momentum, energy, and mass conservation laws can be writ- 

ten in the form 

d(M~D)/dt = S r Pv; ( 2 )  

Eo = M~(D2/2 + a 2 ~ / p ~ / ~  - -  t)) + ~f2a2(e~ ~- 1/(?~ - -  t)); ( 3 )  

M1 = 91V1, M~ = p2V2. (4) 

H e r e  Pv = a~P.v i s  t h e  v a p o r  p r e s s u r e  b e h i n d  t h e  s h o c k  f r o n t ,  Pv = p2V2/V i s  t h e  v a p o r  d e n s i t y  
i n  t h e  c a v i t y ,  M 1 and  M 2 a r e  t h e  a i r  and  v a p o r  m a s s e s  i n c l u d e d  i n  t h e  m o t i o n ,  S r = 2~Rr (R  r - 
Z) is the area of the shock front surface, which we assume to be spherical with center at the 

t 

point 0, being displaced in the compact medium according to the law Z = ~a(f)dt' (see Fig. i). 

0 

V = V l + V 2 is the volume of the perturbed medium, V I = ~(R r -Z)2(2Rr + Z)/3 is the volume of 

the spherical segment, and V 2 is the volume of the crater, eK = M~a----- ~Esc = M2a~ S pu~-~-dV is the dimen- 
v 

sionless kinetic energy of the vapor. 

To make estimates according to (2)-(4), it is necessary to know the gas density and velo- 
city distributions behind the rarefaction wave front and the shape of its front. We take into 
account that heating and evaporation at this point of the compact medium surface start from 
the time when the air shock reaches it, and that the vapor motion in a direction perpendicular 
to the interfacial surface of the media will be predominant. 

We turn now to the results of solving the simplest problem for a plane geometry while 
neglecting air density [9]. Propagation of a radiational rarefaction wave from the inter- 
face of a condensed medium-vacuum is described by analytical dependences in the isothermal 
case. In particular, the vapor velocity and density distributions satisfy the relationships 
u z = a(l + z/a~, p = p~exp(--I -- z/at), where the z axis is perpendicular to the interfacial 
surface of the media; --a~ < z < ~; t > 0. 

Note that even in the homothermal approximation, the problem aboutthe regularities of 
rarefaction wave propagation from the interface of a condensed medium-vacuum interface under 
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the instantaneous liberation of the energy E 0 per unit surface will result in analogous 
dependences: the velocity grows with distance from the wave front according to a linear law, 
while the density decreases exponentially [9]. Taking these results into account, the values 
of the density Pv and the dimensionless kinetic energy gK of the vapor are determined from the 
formulas 

P~V2 P2 
Pv--  V = ' ~ -  exp ( - - a$ )dg ;  

0 

E kv V t ~ exp (-- a~) ~d~ 
M2aZ V 2 -~ J g 

0 

(~ i s  a d i m e n s i o n l e s s  c o o r d i n a t e ) .  

Tak ing  a c c o u n t  o f  ( 2 )  and ( 4 ) ,  we o b t a i n  f rom t h e  e n e r g y  b a l a n c e  e q u a t i o n  (3 )  a t i m e  
d e p e n d e n c e  o f  t h e  shock  f r o n t  r a d i u s  which can be r e d u c e d  t o  t h e  " s t a n d a r d "  form 

B~: = ~o(Eo/m)~176 
~t2 ( 6 - - I )  2 (26-[-I)  + O , 2 ( g ~ + _ _  __  

(5) 

(6) 

(7) 

The gas temperature is calculated from the formula T = (dRr/dt)2/A$ 2 and can be converted 
by taking account of (7) into 

l ' =  ~(Eo/p~)~ ~, ~1 = (~o/~)~/R.  (8 )  

Assume given the following values of the initial parameters for the estimates: 01 = 1.29 
kg/m3, YI = 1.37, ~l = 2.02 [8], P2 = 103 kg/m3, ~2 = 1.52, ~z = 2:57 [i0]. Let us examine 
different possible crater forms: a cone (V 2 = ~z3(62 - 1)/3), a spherical segment (V 2 = 
~z3(352 - 2)/6), a hemispheroid (V 2 = vz32($ 2 - i)/3). We determined 6 from (2) for each 
case, a from (5), and eK, from (6), which permits computation of ~0 and $i, where the 
values of the desired parameters are presented in Table I. A sufficiently weak dependence 
of the desired parameters on the choice of the crater geometry is detected and the approxi- 
mate solution constructed can be considered acceptable for rough estimates. 

For comparison we present analogous data without taking the evaporation of the compact 
medium into account. The solution of the self-similar problem in a homothermal approximation 
[5] results in dependences analogous to (7) and (8) but with different values of ~0 and $~. 
For the selected values of 01, ~l, and ~l and the energy 2E 0 of theexplosion,~$0 = 1..29 and 
~l = 1.57"10-5 sec2"m-2"K. 

Therefore, taking account of the mass of vapor involved in motion results in a moderate 
diminution of the shock front radius and a significant diminution in the gas temperature. 
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